(I do this as a warm up exercise when I need to think about combinatorics, weird as that may sound)
The total number of choices for 5 cards is
$$ 52 * 51 * 50 * 49 * 48 = 311875200 $$
One pair:
$$ {13 \choose 1} * { 4 \choose 2} * { 12 \choose 3 } * { 4 \choose 1}^3 = 1098240 $$
Two pair:
$$ {13 \choose 2 } * { 4 \choose 2}^2 * { 11 \choose 1} * {4 \choose 1} = 123552 $$
Three of a kind:
$$ {13 \choose 1} * {4 \choose 3} * { 12 \choose 2 } * { 4 \choose 1}^2 = 54912 $$
Straight:
$$ {10 \choose 1} * { 4 \choose 1} ^ 5 - (straight flush,royal flush) = {10 \choose 1} * { 4 \choose 1} ^ 5 - {10 \choose 1}* {4 \choose 1} = 10200 $$
Flush:
$$ {13 \choose 5} * {12 \choose 1} - (royal flush,straight flush) = {13 \choose 5} * {12 \choose 1} - {10 \choose 1}* {4 \choose 1} = 5108 $$
Full House:
$$ {13 \choose 1} {4 \choose 3} * { 12 \choose 1} * { 4 \choose 2} = 3744 $$
Four of a kind:
$$ {13 \choose 1} * { 12 \choose 1} * { 4 \choose 1} = 624$$
Straight flush (not including royal flush):
Per suit there are 10 choices of straight (A - 5, 2 - 6, 3 - 7, 4 - 8, 5 - 9, 6 - 10, 7 - J, 8 - Q, 9 - K, 10 - A)
$$ {10 \choose 1} * {4 \choose 1} - {4 \choose 1} = 36 $$
Royal flush:
$$ {4 \choose 1} = 4 $$
The total number of choices for 5 cards is
$$ 52 * 51 * 50 * 49 * 48 = 311875200 $$
One pair:
$$ {13 \choose 1} * { 4 \choose 2} * { 12 \choose 3 } * { 4 \choose 1}^3 = 1098240 $$
Two pair:
$$ {13 \choose 2 } * { 4 \choose 2}^2 * { 11 \choose 1} * {4 \choose 1} = 123552 $$
Three of a kind:
$$ {13 \choose 1} * {4 \choose 3} * { 12 \choose 2 } * { 4 \choose 1}^2 = 54912 $$
Straight:
$$ {10 \choose 1} * { 4 \choose 1} ^ 5 - (straight flush,royal flush) = {10 \choose 1} * { 4 \choose 1} ^ 5 - {10 \choose 1}* {4 \choose 1} = 10200 $$
Flush:
$$ {13 \choose 5} * {12 \choose 1} - (royal flush,straight flush) = {13 \choose 5} * {12 \choose 1} - {10 \choose 1}* {4 \choose 1} = 5108 $$
Full House:
$$ {13 \choose 1} {4 \choose 3} * { 12 \choose 1} * { 4 \choose 2} = 3744 $$
Four of a kind:
$$ {13 \choose 1} * { 12 \choose 1} * { 4 \choose 1} = 624$$
Straight flush (not including royal flush):
Per suit there are 10 choices of straight (A - 5, 2 - 6, 3 - 7, 4 - 8, 5 - 9, 6 - 10, 7 - J, 8 - Q, 9 - K, 10 - A)
$$ {10 \choose 1} * {4 \choose 1} - {4 \choose 1} = 36 $$
Royal flush:
$$ {4 \choose 1} = 4 $$